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Introduction

e Sequences are ordered lists of elements.
® 1,23,538
e 1,3, 9,27, 81, .......

e Sequences arise throughout mathematics, computer
science, and in many other disciplines, ranging from
botany to music.

e We will introduce the terminology to represent
sequences and sums of the terms in the sequences.
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Sequences

Definition: A sequence is a function from a subset of
the integers (usually either the set {0, 1, 2, 3, 4, .....} or
{1,2,3,4,...} ) toasetS.

® The notation a, is used to denote the image of the

integer n. We can think of a, as the equivalent of
f(n) where fis a function from {0,1,2,.....} to S. We
call a, a term of the sequence.
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Sequences

Example: Consider the sequence{an} where

Ap — 5 {an} — {&1,(12,&3,...}

DO | —
Lo| =
|
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Geometric Progression

Definition: A geometric progression is a sequence of the

form:a,ar,ar?,... ar",...

where the lmtlal term a and the common ratio r are real
numbers.

Examples:

1. Leta=1andr=-—1.Then:

(b} = {bo,b1,bo,bs,by,...} = {1,-1,1,—1,1,...)
2. Let a=2andr=5. Then:

{cn} = {co,c1,c0,c3,c4,...} = {2,10, 50,250, 1250, ...}
3. Leta=6andr=1/3. Then:

2 2
{dn}:{d07d17d27d37d47”'}:{6727§ _7 }

@IL\D
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Arithmetic Progression

Definition: A arithmetic progression is a sequence of the
form: @, a+d,a+2d,...,a+nd,...

where the initial term a and the common difference d are
real numbers.

Examples:
1. Leta=—1andd=4:

{sn} = {so,s1,92,83,84,...} = {—1,3,7,11,15,...}
2. Let a=7andd= —3:

{to} = {to,t1,ta, t3, b, ...y = {7,4,1,—2,—5, ...}
3. Leta=1landd=2:

{un} = {ug, ur,us, us, ug, ...+ =41,3,5,7,9,...}
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Strings
Definition: A string is a finite sequence of characters

from a finite set (an alphabet).

e Sequences of characters or bits are important in
computer science.

® The empty string is represented by A.
® The string abcde has length 5.



/ \/

Recurrence Relations

Definition: A recurrence relation for the sequence {a,}
is an equation that expresses a, in terms of one or
more of the previous terms of the sequence, namely,
a,a, .. a,_, forall integers n with n = n_, where n, is
a nonnegative integer.

e A sequence is called a solution of a recurrence relation
if its terms satisfy the recurrence relation.

e The initial conditions for a sequence specify the terms
that precede the first term where the recurrence
relation takes effect.
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Questions about Recurrence Relations

Example 1: Let {a,} be a sequence that satisfies the
recurrence relationa, =a,_ + 3 forn=1,2,34,.... and
suppose that ay = 2. Whatare q,, a, and a,?

|Here a_ = 2 is the initial condition. ]

Solution: We see from the recurrence relation that
a, =a,+3=2+3=5
a, =5+3=28
a; =8+3=11
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Questions about Recurrence Relations

Example 2: Let {a,} be a sequence that satisfies the
recurrence relationa, =a,_ -a,_, forn=2,34,... and
suppose that a, = 3 and a, = 5. What are a, and a;?

|Here the initial conditions are a,= 3 and a, = 5. |

Solution: We see from the recurrence relation
that

a,=a,-a,=5-3=2

a,=a,-a,=2-5=-3
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Fibonacci Sequence

Definition: Define the Fibonacci sequence, f,,f..f,,--» by:
e Initial Conditions: f,=0, f, =1
e Recurrence Relation: f, =f, . +f,,

Example: Find fzf3;f4:f5 and f, .

Answer:
fHL=fi+f, =1+0=1,
f=f, +ff =1+1=2,
fi=f(+f=2+1=3,
fo=f,+f; =3+2=5,
foe=fc+f, =5+3=8.
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Solving Recurrence Relations

® Finding a formula for the nth term of the sequence
generated by a recurrence relation is called solving the
recurrence relation.

e Such a formula is called a closed formula.

e Various methods for solving recurrence relations will
be covered in Chapter 8 where recurrence relations
will be studied in greater depth.

e Here we illustrate by example the method of iteration
in which we need to guess the formula. The guess can
be proved correct by the method of induction
(Chapter 5).
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Iterative Solution Example

Method 1: Working upward, forward substitution

Let {a,} be a sequence that satisfies the recurrence relation
a,=a,, + 3 for n=2,3,4,... and suppose that a, = 2.

a, =2+3

a; =(2+3)+3=2+3-2

a, = (2+2-3)+3=2+3-3

a,=a,,+3 =2+3:-(n-2))+3=2+3(n-1)

n
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Iterative Solution Example

Method 2: Working downward, backward substitution

Let {a,} be a sequence that satisfies the recurrence relation
a,=a,,+ 3 forn=2,34,.. and suppose that a, = 2.

a, =a,,;+3
:(an_2+3)+3:an_2+3'2

=(a,3+3)+3°2 =a,;+3-3

n

=a, +3(n-2) =(a; +3)+3(n-2) =2+3(n-1)
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Financial Application

Example: Suppose that a person deposits $10,000.00
in a savings account at a bank yielding 11% per year
with interest compounded annually. How much will
be in the account after 30 years?

Let P, denote the amount in the account after 30
years. P satisfies the following recurrence relation:

P =P +011P _=(1.11)P,__
with the initial condition P, = 10,000

Continued on next slide 2>
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Financial Application

P =P +011P _=(1.11)P,
with the initial condition P, =10,000
Solution: Forward Substitution
P =(1.11)P,
P, =(1.11)P,= (1.11)>P,
P, = (1.11)P,= (1.11)3P,

(1.11)P,_ = (1.11)"P, = (1.11)"10,000
(1.11)" 10,000 (Can prove by induction, covered in Chapter 5)
=(1.11)3° 10,000 = $228,992.97

PTl
Pn
P,
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Special Integer Sequences (opt)

e Given a few terms of a sequence, try to identify the
sequence. Conjecture a formula, recurrence relation,
or some other rule.

e Some questions to ask?
e Are there repeated terms of the same value?

e Can you obtain a term from the previous term by
adding an amount or multiplying by an amount?

e Can you obtain a term by combining the previous terms
in some way?

e Are they cycles among the terms?
e Do the terms match those of a well known sequence?
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Sequences

Example 1: Find formulae for the sequences with the
following first five terms: 1, %2, ¥4, 1/8,1/16

Solution: Note that the denominators are powers of 2. The
sequence with a, =1/27is a possible match. This is a
geometric progression with a=1 and r= 7.

Example 2: Consider 1,3,5,7,9

Solution: Note that each term is obtained by adding 2 to
the previous term. A possible formulais a, = 2n+ 1. This
is an arithmetic progression with a=1 and d = 2.

Example 3:1,-1,1,-1,1
Solution: The terms alternate between 1 and -1. A possible

sequence is a, = (—1)”". This is a geometric progression
witha=1and r=—1.
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Useful Sequences

TABLE 1 Some Useful Sequences.
nth Term First 10 Terms

n? 1,4,9, 16,25, 36,49, 64, 81, 100, . . .
n3 1,8,27,64, 125,216, 343,512,729, 1000, ...
n* 1,16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, ...
i 2.4,8,16, 32,64, 128, 256, 512, 1024, . ..
e 3,9,27,81, 243,729, 2187, 6561, 19683, 59049, ...
n! 1,2,6, 24,120, 720, 5040, 40320, 362880, 3628800, ...
In 1,1,2,3,5,8, 13,21, 34, 55, 89, ...
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Guessing Sequences

Example: Conjecture a simple formula for a,, if the
first 10 terms of the sequence {a,} are 1, 7, 25, 79, 241,
727,2185,6559,19681, 59047.

Solution: Note the ratio of each term to the previous
approximates 3. So now compare with the sequence
3" . We notice that the nth term is 2 less than the
corresponding power of 3. So a good conjecture is
that a, = 3" — 2.



/ \/

Summations

® Sum of the terms  Qm, Am+1,- -, 0n
from the sequence {q,,}

e The notation:
mn

n
S o St Sy
j=m

represents
am+am+1+°"+an

e The variable ﬁ is called the index of summation. It runs
through all the integers starting with its lower limit m
and ending with its upper limit n.
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Summations

e More generally for a set S:

Ejesa

® EXE[IIIplES‘ T0—|—T1—|—7’2—|—7”3+"'—|—7“n227’j
0
1.1 =1
1 — —

If S={2,5,7,10} then Zaj = ag + as + a7 + aqo
JeS
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Product Notation

¢ Product of the terms Am ;s Am+1,---50n
from the sequence {an}

e The notation:

n
J Hj:m a’] ngj Sn J
J=m
represents

Ay, X g1 X -+ X Gy
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Geometric Series

Proof:

Sums of terms of geometric progressions

n a,rn—l—l

Za/rj — 7“—1— T#l
(n+1)a r=1

7=0
n . To compute S, , first multiply both sides of the
Let G, = Z ar’ equality by r and then manipulate the resulting
=0 sum as follows:
n
rS, =r Z ar’
7=0
n
— Z arl 1l Continued on next slide >
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Geometric Series

— a’]"j+1 . .
z From previous slide.
=0

= Z ar®  Shifting the index of summation with k =j + 1.

Removing k =n + 1 term and

. k n+l
- (Z “ ) +(ar 2 adding k = 0 term.

= Sp + (ar™* — a) Substituting S for summation formula

o.o Tsn = STL + (a’l“n+1 — CL)
ar™tl —q
Sn = r—1 lfr *1
Sn ar a=(n+1)a r=1
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Some Useful Summation Formulae

Some Useful Summation Formulae.

Sum

> ark (r #£0)

k=0

Geometric Series: We

Closed Form ) .
just proved this.
ar"t! —a . 2|
r—1
Later we
nn+1) .
T will prove
(n+1Q2n+1) / some of
nn n
6 these by
" 5 < induction.
n“(n+1)
4

<~ Proofs use calculus

i &
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Cardinality

Definition: The cardinality of a set A is equal to the
cardinality of a set B, denoted

Al = |B],
if and only if there is a one-to-one correspondence (i.e., a
bijection) from A to B.

e [fthere is a one-to-one function (i.e., an injection) from A
to B, the cardinality of A is less than or the same as the
cardinality of B and we write |A| < |B|.

e When |A| < |B| and A and B have different cardinality, we
say that the cardinality of A is less than the cardinality of B
and write |A| < |B|.
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Cardinality

e Definition: A set that is either finite or has the same
cardinality as the set of positive integers (Z*) is called
countable. A set that is not countable is uncountable.

e The set of real numbers R is an uncountable set.

e When an infinite set is countable (countably infinite)
its cardinality is ¥, (where X is aleph, the 15t letter of
the Hebrew alphabet). We write |S| = X, and say that
S has cardinality “aleph null.”
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Showing that a Set is Countable

e An infinite set is countable if and only if it is possible
to list the elements of the set in a sequence (indexed
by the positive integers).

e The reason for this is that a one-to-one

correspondence f from the set of positive integers to a
set S can be expressed in terms of a sequence

a,a,.., a,.. where a = f(1), a, =f(2),..., a, = f(n),...
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Hilbert’s Grand Hotel

The Grand Hotel (example due to David Hilbert) has countably infinite number of

rooms, each occupied by a guest. We can always accommodate a new guest at this
hotel. How is this possible?

David Hilbert

Explanation: Because the rooms of Grand
Hotel are countable, we can list them as
Room 1, Room 2, Room 3, and so on. When a
new guest arrives, we move the guest in Room
1 to Room 2, the guest in Room 2 to Room 3, ‘
and in general the guest in Room n to Room n =
+ 1, for all positive integers n. This frees up ” h
Room 1, which we assign to the new guest,
and all the current guests still have rooms.

Manager

The hotel can also accommodate a
countable number of new guests, all the
guests on a countable number of buses
where each bus contains a countable
number of guests (see exercises).
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Showing that a Set is Countable

Example 1: Show that the set of positive even integers F is
countable set.

Solution: Let f(x) = 2x.

T

4 6 8 10 12 ...

Then fis a bijection from N to FE since fis both one-to-one
and onto. To show that it is one-to-one, suppose that

f(n) =f(m). Then 2n =2m, and so n= m. To see that it is
onto, suppose that t is an even positive integer. Then

t = 2k for some positive integer k and f(k) = t. <



/ \/

Showing that a Set is Countable

Example 2: Show that the set of integers Z is
countable.

Solution: Can list in a sequence:
0,1,—-1,2,—2,3,—3,...........
Or can define a bijection from N to Z:
e When nis even: f(n)=n/2
e Whennisodd: f(n)=—(n—1)/2 <



me Rational Numbers are
Countable

e Definition: A rational number can be expressed as
the ratio of two integers p and g such that g # 0.
e % is a rational number

e V2 is not a rational number.

Example 3: Show that the positive rational numbers
are countable.

Solution:The positive rational numbers are countable
since they can be arranged in a sequence:

Tyy Ty Ty e

The next slide shows how this is done. —



me Rational Numbers are
Countable

First row g = 1.
Second row q = 2.

ete. 1 2 3 4 B)
1 1 1 1 1
Constructing the List
1 2 3 4 8]
2 2 2 2 2
First list p/q with p + g = 2.
Next list p/q with p + g = 3 (1 3 g 4 5
3 3 3 3 3
And so on.
1 2 3 4 B
4 4 4 4 4
1 2 3 4 B
1,%,2,3,1/3,1/4,2/3, ... 5 5 5 5 5
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Strings

Example 4: Show that the set of finite strings S over a
finite alphabet A is countably infinite.

Assume an alphabetical ordering of symbols in A

Solution: Show that the strings can be listed in a
sequence. First list

1. All the strings of length 0 in alphabetical order.

2. Then all the strings of length 1 in lexicographic (as in a
dictionary) order.

3. Then all the strings of length 2 in lexicographic order.
4. And so on.

This implies a bijection from N to S and hence it is a
countably infinite set. <
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ava programs is
countable.

Example 5: Show that the set of all Java programs is countable.

Solution: Let S be the set of strings constructed from the

characters which can appear in a Java program. Use the

ordering from the previous example. Take each string in turn:
e Feed the string into a Java compiler. (A Java compiler will

determine if the input program is a syntactically correct Java
program.)

o [f the compiler says YES, this is a syntactically correct Java
program, we add the program to the list.

e We move on to the next string.

In this way we construct an implied bijection from N to the ses
of Java programs. Hence, the set of Java programs is countable.



e Real Numbers areis e

Uncountable

Example: Show that the set of real numbers is uncountable.
Solution: The method is called the Cantor diagnalization argument, and is a proof by

contradiction.
L Suppose R is countable. Then the real numbers between 0 and 1 are also countable
(any subset of a countable set is countable - an exercise in the text).
2. The real numbers between 0 and 1 can be listed in order r, r,, Iy yeee -

3. Let the decimal representation of this listing be 71 = 0.d11d12d13d14d15d;6 - . .
ro = 0.d21d22d23d24d25d2 . - -
r3 = 0.d31d32d33d34d35d36 - . -

4. Form a new real number with the decimal expansion r = .rrorsr,...
where r; = 3 lfdm 75 3 and T, = 4 lfd“ =3
5. risnotequal toanyofther,r,,r,,... Because it differs from r; in its ith position
after the decimal point. Therefore there is a real number between 0 and 1 that is not
on the list since every real number has a unique decimal expansion. Hence, all the
real numbers between 0 and 1 cannot be listed, so the set of real numbers between 0
and 1 is uncountable.

6. Since a set with an uncountable subset is uncountable (an exercise), the set of real
numbers is uncountable.
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Computability

e Definition: We say that a function is computable if
there is a computer program in some programming
language that finds the values of this function. If a
function is not computable we say it is
uncomputable.

® There are uncomputable functions. We have shown
that the set of Java programs is countable. There are
uncountably many different functions from a
particular countably infinite set (i.e., the positive
integers) to itself. Therefore there must be
uncomputable functions.



